Acta Cryst. (1977). B33, 1996-1997

Plutonium–Iridium Pu₅Ir₃*

By Don T. Cromer

University of California, Los Alamos Scientific Laboratory, Los Alamos, NM 87545, USA

(Received 5 October 1976; accepted 15 February 1977)

Abstract. Pu₅Ir₃, 14/mcm, Z = 4, a = 11.012 (3), c = 5.727 (2) Å, $\rho_c = 16.94$ g cm⁻³, for an approximately stoichiometric alloy. For an Ir-rich alloy a = 11.015 (3), c = 5.621 (2) Å. This structure is of the $D8_m$ (W₅Si₃) type. For the Ir-rich alloy it is postulated that some Ir is substituted in the $0.\frac{1}{224}$ Pu site.

Introduction. Kutaitsev, Chebotarev, Lebedev, Andrianov, Konev & Menshikova (1965) reported three compounds in the Pu-Ir system: PuIr₂ having the Cu₂Mg structure and Pu₅Ir₄ and Pu₅Ir₃ with unknown structures. This note reports the refinement of the structure of Pu₅Ir₃ which is a representative of the W_5Si_3 ($D8_m$) structure type. An approximately stoichiometric crystal and an Ir-rich crystal were both refined. The results for the Ir-rich crystal are close to those reported by Beznosikova, Chebotarev, Luk'yanov, Chernyi & Smirnova (1974) for Pu₅Ir₃.

Alloys containing $37 \cdot 1$ and $40 \cdot 1$ at.% Ir were prepared by arc melting and subsequent heat treatment. Crystals of Pu₅Ir₃ were found in both alloys. Because the *c* axes differ very significantly in the two specimens, complete structure determinations were made in the hope of determining the type of disorder that must be present. Data for the two specimens are given in Table 1. Intensity data were taken and equivalent reflections averaged in the manner described by Cromer & Larson (1977).

Full-matrix least-squares refinements minimizing $\Sigma w(\Delta F)^2$ were made with the scattering factors of Cromer & Waber (1974) and the anomalous-dispersion terms of Cromer & Liberman (1970). The positional parameters for the two specimens are given in Table 2.†

Discussion. After correction for anomalous dispersion the Pu and Ir scattering factors do not differ greatly.

Table 1. Data concerning two specimens of Pu, Ir,

Specimen number	14362	14363 <i>A</i>	
Gross composition			
lr	3/.1 at.%	40·1 at.%	
Pu	62.9	59.9	
Heat treatment	73 h, 1100 ° C	72 h, 900°C	
Space group	I4/mcm	I4/mcm	
$a (\lambda = 0.70930 \text{ Å})$	11.012 (3) Å	11.015 (3) Á	
С	5.727 (2)	5.621 (2)	
Ζ	4	4	
$d_{\rm meas}$ (of ingot)	16.64 g cm ⁻³	16.99 g cm ⁻³	
d_{calc} (stoichiometric)	16.94	17.25	
Data collection			
Radiation	Mo Ka (graphite	e monochromated)	
Take-off angle	3.0	,	
Scan range	2.2°		
Step size	0.05°		
Step time	1.8 s		
2 <i>H</i>	60°		
T (threshold parameter)	2.0		
Number of reflections	2.0		
massured	1006	1023	
Linique reflections	302	202	
Unique reflections	302	293	
Pafactions massured twice	201	12	
Reflections measured twice	14	10	
times	8	10	
Reflections measured four	64	60	
times			
Reflections measured six times	19	20	
Reflections measured seven	2	13	
times			
Reflections measured eight	195	177	
times			
Absorption corrections	Spherical +	Analytic ⁺	
·	empirical*	(7 faces)	
Crystal volume	0.23×10^{-3} mm	$n^{3}0.57 \times 10^{-4} \text{ mm}^{3}$	
ц	1127 cm^{-1}	1127 cm ⁻¹	
Transmission maximum	0.036	0.237	
Transmission minimum	0.005	0.035	
$R_{\rm e}$ (no corrections)	0.0859	0.2152	
R_{-} (abs corrected)	0.0619	0.0866	
$r_F(uod, correctou)$	0 0012	5 5000	

* Furnas (1957); Cromer, Larson & Roof (1972).

† de Meulenaer & Tompa (1965).

Consequently, one cannot easily determine site occupancies by inspection of thermal parameters or by introducing occupancy parameters. The site at $0.\frac{1}{2^{14}}$ is the place to look for disorder. In (Pu.Ce)₅Co₃ (Larson, Roof & Cromer, 1964) both positional and substitution-

^{*} Work performed under the auspices of the US Energy Research and Development Administration.

[†] Lists of the final least-squares cycles, structure factors, anisotropic thermal parameters and interatomic-distance, thermalellipsoid and polyhedron calculations have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32509 (44 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 2. Positional parameters for Pu₅Ir₃

Specimen 14362 ($R = 0.0417, R_{w} = 0.0585$)					
	Equipoint	x	у	Ζ	
Pu(1) Pu(2) Ir(1) Ir(2)	$ \begin{array}{r} 4(b) \\ 16(k) \\ 4(a) \\ 8(h) \end{array} $	0 0·0845 (1) 0 0·1583 (1)	$ \begin{array}{c} \frac{1}{2} \\ 0.2184 \\ 0 \\ \frac{1}{2} + x \end{array} $	14 0 14 0	
Specimen 14363A ($R = 0.0536, R_w = 0.0540$)					
Pu(1) Pu(2) Ir(1) Ir(2)	4(b) 16(k) 4(a) 8(h)	0 0·0845 (1) 0 0·1590 (1)	$ \frac{\frac{1}{2}}{0.2204} (1) \\ 0 \\ \frac{1}{2} + x $	14 0 14 0	

Table 3. Interatomic distances in Pu₅Ir₃ (Å)

The first distance given is from specimen 14362 and the second from specimen 14363*A*.

Pu(1)-2 Pu(1)	2.864 (1)	2.810(1)
-8 Pu(2)	3.540(1)	3.511 (1)
-4 Ir(2)	2.851 (2)	2.848 (2)
Pu(2) - 2 Pu(1)	3.540(1)	3.511(1)
-Pu(2)	3.069 (2)	3.040 (2)
-2 Pu(2)	3.415 (1)	3.370(1)
-2 Pu(2)	3.542(1)	3.519 (1)
-2 Pu(2)	3.647 (2)	3.676 (2)
-2 Ir(1)	2.950 (1)	2.955 (1)
$-\operatorname{Ir}(2)$	2.909 (2)	2.905 (2)
— Ir(2)	2.999 (1)	2.993 (1)
-2 Ir(2)	3.272 (1)	3.215 (1)
Ir(1) - 2 Ir(1)	2.864 (1)	2.810(1)
-8 Pu(2)	2.950 (1)	2.995 (1)
Ir(2) - 2 Ir(2)	4.045 (2)	3.991 (2)
-2 Pu(1)	2.851 (2)	2.848 (2)
-2 Pu(2)	2.909 (2)	2.905 (2)
-2 Pu(2)	2.999 (1)	2.993 (1)
-4 Pu(2)	3.272 (1)	3.215 (1)

al disorder were apparent in this site. In Pu_5Ru_3 (Cromer, Larson & Roof, 1975) there were indications that this site was only 92% occupied by Pu.

In the present two specimens one cannot directly compare thermal parameters because of the uncertainty in absorption corrections. In particular, an error in the estimation of the crystal volume would have a systematic effect on the thermal parameters. However, we can compare the thermal parameters of Pu(1) and Pu(2) in each of the two specimens. In specimen 14362, which should be nearly stoichiometric, Pu(1) and Pu(2) have nearly identical thermal parameters. In specimen 14363*A*, with excess Ir, Pu(1) has a larger and more anisotropic motion than Pu(2). One can postulate that in this alloy the 4(b) site has some Ir in it. This substitution would account for the larger thermal parameter and for its being more anisotropic, since the smaller Ir atoms could move farther along the *c* axis. Also, the mean interatomic distance would be smaller, and hence the smaller *c* axis. The increased Ir composition is probably not accompanied by Pu vacancies as the measured density is higher in the high-Ir alloy.

Interatomic distances are given in Table 3. Stereo drawings of the polyhedra in this structure type have been given in the note on Pu_5Ru_3 (Cromer, Larson & Roof, 1975).

Thanks are due to V. O. Struebing for preparation of the alloys. All calculations were made with a CDC 7600 computer with the *LASL* system of crystallographic programs developed by A. C. Larson.

References

- BEZNOSIKOVA, A. V., CHEBOTAREV, N. T., LUK'YANOV, A. S., CHERNYI, A. V. & SMIRNOVA, E. A. (1974). *At. Energ.* (USSR), **37**, 144–148.
- CROMER, D. T. & LARSON, A. C. (1977). Acta Cryst. B33. In the press.
- CROMER, D. T., LARSON, A. C. & ROOF, R. B. (1972). Acta Cryst. B28, 1016–1022.
- CROMER, D. T., LARSON, A. C. & ROOF, R. B. (1975). Acta Cryst. B31, 1756–1757.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.
- CROMER, D. T. & WABER, J. T. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.
- FURNAS, T. C. (1957). Single-Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
- KUTAITSEV, V. I., CHEBOTAREV, N. T., LEBEDEV, I. G., ANDRIANOV, M. A., KONEV, V. N. & MENSHIKOVA, T. S. (1965). *Plutonium* 1965, edited by A. E. KAY & M. B. WALDRON, pp. 420–449. London: Chapman & Hall.
- LARSON, A. C., ROOF, R. B. & CROMER, D. T. (1964). Acta Cryst. 17, 1382–1386.
- MEULENAER, J. DE & TOMPA, H. (1965). Acta Cryst. 19, 1014–1018.